ASSESSMENT OF THE RIGHT VENTRICLE BY ECHOCARDIOGRAPHY

Anatomy of the Right Ventricle

RIGHT VENTRICULAR ANATOMY

3 MUSCULAR BANDS

- THE PARIETAL BAND
- SEPTOMARGINAL BAND
- MODERATOR BAND(DEFINES ANATOMIC RIGHT VENTRICLE FROM LEFT)

RV OUTFLOW ANATOMY

RV WALL SEGMENTS

• RV WALL THICKNESS AND CHAMBER SIZE

RV *INFERIOR WA*LL

SUBCOSTAL VIEW

N=<0.5cm Measured at peak r wave

2D and M-mode: Thickness of RV Free Wall

- Normal: less than 0.5 cm
- Measure at the level of TV chordae and at the peak of R wave of ECG on subcostal view
- Well correlated with peak RV systolic pressure

DIAMETERS ABOVE THE TRICUSPID VALVE ANNULUS

MID RV CAVITY

DISTANCE FROM THE TV ANNULUS TO RV APEX

2D and M-mode: RV Dimension

Reference Mildly Moderately Severely range abnormal abnormal abnormal

Basal RV diameter (RVD1), cm2.0-2.8 2.9-3.3 3.4-3.8 \geq 3.9 Mid-RV diameter (RVD2), cm2.7-3.3 3.4-3.7 3.8-4.1 \geq 4.2 Base-to-apex (RVD3). cm7.1-7.9 8.0-8.5 8.6-9.1 \geq 9.2

2D and M-mode: RVOT and PA Size

2D and M-mode: RVOT and PA Size

Reference Mildly Moderately Severely range abnormal abnormal abnormal

RVOT diameters, cm

Above a ortic valve(RVOT1)2.5-2.9 3.0-3.2 3.3-3.5 \geq 3.6

Above pulmonic valve(RVOT2)1.7-2.3 2.4-2.7 2.8-3.1 ≥ 3.2

PA diameter, cm

Below pulmonic valve (PA1)1.5-2.1 2.2-2.5 2.6-2.9 \geq 3.0

2D and M-mode: RV Size

Normal RV is approximately 2/3 of the size of the LV
 RV Dilatation

- : appears similar or larger than LV size
- : shares the apex

Limitations of Echocardiography in The Evaluations of RV Function

Difficulties in the estimation of RV volume

- : crescentic shape of RV
- : separation between RV inflow and outflow

.no uniform geometric assumption for measuring volume

Difficulties in the delineation of endocardial border owing to well developed trabeculation

Difficulties in the adequate image acquisition owing to the location just behind the sternum

Limitations of Echocardiography in The Evaluations of RV Function

Difficult to standardize the evaluation method of RV function

- : Variations in the direction or location of the RV are common
- : Easily affected by preload, afterload, or LV function
- Different complex contraction-relaxation mechanism among the segments of the RV
- Cannot image the entire RV in a single view

Function of the Right Ventricle

Why should we measure RV function?

RV is not just a conduit of blood flow

 has its unique function

 Prognostic significance in various clinical settings
 Risk stratification or guide to optimal therapy

Function of the Right Ventricle

Conduit of blood flow

- Maintain adequate pulmonary artery perfusion pressure to improve gas exchange
- Maintain low systemic venous pressure to prevent congestion of tissues or organs
- Affect LV function
 - : limit LV preload in RV dysfunction
 - : Ventricular interdependence

Prognostic significance in various clinical settings

RV Function and Prognosis

RV ejection fraction: an indicator of increased mortality in patients with CHF associated with CAD

(Polak et al. J Am Coll Cardiol 1983)

RV function predicts exercise capacity and survival in advanced heart failure

(Di Salvo et al. J Am Coll Cardiol 1983)

RV function is a crucial determinant of short-term prognosis in severe chronic heart failure

(Gavazzi et al. J Heart Lung Transplant 1997)

RV Function and Prognosis

RV ejection fraction: independent predictor of survival in patients with moderate heart failure

(De Groote et al. J Am Coll Cardiol 1998)

RV function predicts prognosis in patients with chronic pulmonary disease

(Burgess et al. J Am Soc Echocardiogr 2002)

RV contractile reserve is associated with one year mortality in patients with DCMP

(Otasevic et al. Eur J Echocardiography 2005)

Measurements of RV Function

- 2 D and M-mode echocardiography
 - : chamber size or wall thickness
 - : RV area or fractional area change
 - : RV volume or EF
 - : Tricuspid annular systolic plane excursion (TAPSE)
- Doppler echocardiography
- 3 Dimensional Echocardiography

2D and M-mode: Eccentricity Index

The ratio of two orthogonal minor axis left ventricular chordae, measured from short axis view

- Reflects the degree of septal flattening resulting in abnormal LV shape
- Normal: approximately 1.0 in both diastole and systole

2D and M-mode: Eccentricity Index

VANC PH VEON. Consider to IMACE ADENA analises O

2D and M-mode: Eccentricity Index

2D and M-mode: Fractional Area Change (FAC)

(End-diastolic area) – (end-systolic area) x 100 (end-systolic area)

2D and M-mode: RV Area and FAC in A4C

Reference Mildly Moderately Severely range abnormal abnormal abnormal

RV diastolic area (cm²)11-28 29-32 33-37 \geq 38

RV systolic area (cm²)7.5-16 17-19 20-22 ≥23

RV FAC (%)32-60 25-31 18-24 ≤17

Well correlated with RV function measured by radionuclide ventriculography or MRI

Good predictor of prognosis

Limitations: fail to measure FAC due to inadequate RV tracing

2D and M-mode: RV Volume or EF

 Remains problematic given the complex geometry of the RV and the lack of standard methods for assessing RV volumes
 RVEF (%) = { (EDV – ESV) / EDV } x 100 (%)

 Normal Range Ellipsoidal model

 LV RV LV RV

 EDVI (ml/m²)52-87 63-103 59.17 70.0

 ESVI (ml/m²)14-35 22-56 22.64 32.6

 SV (ml/m²)18-52 40-41 36.42 37.31

 EF (%)59-74 43-65 61.20 53.91

PVR BY DOPPLER ECHO

PVR=TRV/TVIRVOTX10+0.16(NI value is 1.5-2.5)

Tricuspid Annular Plane Systolic Excursion

Degree of systolic excursion of TV lateral annulus on A4C

- : 1.5-2.0 cm in normal
- : Value less than 1.5 cm is considered as abnormal
- Well correlated with RVEF measured by RVG
- Reproducible
- Strong predictor of prognosis in patients with CHF

Tricuspid Annular Plane Systolic Excursion

*** TAPSE and RV ejection fraction** Event free survival according
 : TAPSE 2cm = RVEF 50% to TAPSE in patients with CHF

- : TAPSE 1.5cm = RVEF 40%
- : TAPSE 1cm = RVEF 30%
- : TAPSE 0.5cm = RVEF 20%

Doppler Echocardiography: Tissue Doppler Imaging

Peak systolic velocity (PSV) Normal <11.5

Tricuspid lateral annular velocities

Doppler Echocardiography: Tissue Doppler Imaging

- Allows quantitative assessment of RV systolic and diastolic function by measurement of myocardial velocities
- Peak systolic velocity (PSV)
 - : PSV < 11.5 cm/s identifies the presence of RV dysfunction
 - : Sensitivity of 90%, specificity of 85%
 - : Less affected by HR, loading condition, and degree of TR
- Tricuspid lateral annular velocities
 - : Reduced in patients with inferior MI and RV involvement
 - : Associated with the severity of RV dysfunction in patients with heart failure

Doppler Echocardiography: Strain Rate Imaging

Doppler Echocardiography: Strain Rate Imaging

Doppler Echocardiography: Strain Rate Imaging

RV longitudinal strain in apical view

- : Feasible in clinical setting
- : Baso-apical gradient with higher velocities at the base
- : RV velocities are consistently higher as compared to LV
- Strain and strain rate values
 - : More inhomogeneously distributed in the RV
 - : Reverse baso-apical gradient, reaching the highest values in the apical segments and outflow tract
- Acute increase in RV afterload
 - : Increase in RV myocardial strain rate
 - : Decrease in peak systolic strain, indicating a decrease in SV

Doppler Echocardiography: 3D Echocardiography

Advantages of RT3DE

- : Volume analysis does not rely on geometric assumptions
- : Little artifacts associated with motion or respiration

- Multiple slices may be obtained from the base to the apex of the heart as in the method of discs
 - : Measure entire RV volume
 - : Well correlated with RV volume measured by MRI

RV Function: 3D Echocardiography

RV Function: 3D Echocardiography

RV Function: 3D Echocardiography

Conclusion

RV function is an important parameter in cardiac disease

2DE is a relatively feasible method to assess RV dysfunction in clinical practice

Several new echocardiographic techniques such as TDI, SRI, RT3DE may give us further information in assessing RV function